If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y+(2y^2)=172
We move all terms to the left:
6y+(2y^2)-(172)=0
determiningTheFunctionDomain 2y^2+6y-172=0
a = 2; b = 6; c = -172;
Δ = b2-4ac
Δ = 62-4·2·(-172)
Δ = 1412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1412}=\sqrt{4*353}=\sqrt{4}*\sqrt{353}=2\sqrt{353}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{353}}{2*2}=\frac{-6-2\sqrt{353}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{353}}{2*2}=\frac{-6+2\sqrt{353}}{4} $
| 22f+2=6f+3 | | k+4.5/4=3.6 | | 16x=141 | | 11-g=-9 | | -4(v+3)+2v+5=6v+8 | | 32=-4-6x | | 52.6=128.7/x | | 1.5(w-11)=9 | | 43.2=u-12.6 | | 35.4÷5.9=a | | 16+12n=-20 | | 0.879=x/6 | | 16+2n=-20 | | 3+x=7.5 | | 3c+5c-c+2c=9 | | -160=14(8x+8) | | (3x+5)/4=17 | | 4.4=60/x | | 8.3=3(c+7)-0.7 | | 6x+9=4x+-19 | | 0.313=x/200 | | 5-3t=-2t-5 | | 8n2+24n=0 | | 22f+2=6f-3 | | ---x7=35 | | 0.25=14/x | | 15+2j=7 | | -9-4v=1-3v | | 121t^2−36=0 | | 22.5x-202.5=225 | | -52-6y=36 | | X=3-2yy-2 |